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Abstract. Approximate joint block diagonalization (AJBD) of a set
of matrices has applications in blind source separation, e.g., when the
signal mixtures contain mutually independent subspaces of dimension
higher than one. The main message of this paper is that certain ordinary
approximate joint diagonalization (AJD) methods (which were originally
derived for “degenerate" subspaces of dimension 1) can also be used suc-
cessfully for AJBD, but not all are suitable equally well. In particular, we
prove that when the set is exactly jointly block-diagonalizable, perfect
block-diagonalization is attainable by the recently proposed AJD algo-
rithm “U-WEDGE" (uniformly weighted exhaustive diagonalization with
Gaussian iteration) - but this basic consistency property is not shared
by some other popular AJD algorithms. In addition, we show using sim-
ulation, that in the more general noisy case, the subspace identification
accuracy of U-WEDGE compares favorably to competitors.

1 Introduction

Consider a set of square symmetric matrices Mi, i = 1, . . . , N , that are all
block diagonal, with K blocks of size L × L along its main diagonal, Mi =
Bdiag(Mi1, . . . ,MiK), where Mik is the k−th block of Mi and the Bdiag(·) op-
erator constructs a block-diagonal matrix from its argument matrices. It follows
that the dimension of the matrices is LK × LK. An example of such matrices
is illustrated in Figure 2(a) at the end of the paper. Note that the assumption
that all blocks are of the same size is only used here to simplify the exposition,
and can be relaxed via straightforward generalization.

Next, assume that (possibly perturbed) congruence transformations of these
matrices are given as

Ri = AMiAT + Ni, i = 1, . . . , N (1)
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where the superscript T denotes a matrix transposition, A is an unknown square
“mixing matrix", and Ni is a perturbation (or “noise") matrix. We shall refer to
the case where all Ni = 0, i = 1, . . . , N as the “unperturbed" (or “noiseless")
case. The choice of symbol R reflects the fact that the matrices in the set often
play a role of (sample-) covariance matrices of a partitioned data, or time-lagged
(sample-) covariance matrices.

The goal in Approximate Joint Block Diagonalization (AJBD) is to find a
“demixing" matrix W, such that the matrices

̂Mi = WRiWT , i = 1, . . . , N (2)

are all approximately block diagonal, having the blocks on the main diagonal of
the same size as the original matrices Mik. Ideally, one may wish to estimate
W = A−1 and get ̂Mi ≈ Bdiag(̂Mi1, . . . , ̂MiK), where ̂Mik ≈ Mik.

In general, however, it is impossible to recover the original blocks Mi (even in
the “noiseless" case), because of inherent ambiguities of the problem (e.g., [10]),
but it is possible to recover “independent subspaces", as explained below.

Let W0 = A−1 be partitioned in K blocks Wk of size L × KL, W0 =
[WT

1 , . . . ,WT
K ]T . Each block Wk represents a linear space of all linear combina-

tions of its rows. These linear spaces are in general uniquely identifiable [10,4].
Let ̂W be an estimated demixing matrix. We say that ̂W is “essentially equiv-
alent" to W0 (and therefore represents an ideal joint block diagonalization),
if there exists a suitable LK × LK permutation matrix Π such that for each
k = 1, . . . , K the subspaces spanned by Wk and by the respective k-th block of
Π ̂W coincide (two subspaces are said to coincide if their mutual angle1 is zero).

Some existing AJBD algorithms are restricted to the case where A (and there-
fore also ̂W) are orthogonal [5], some other algorithms consider a general matrix
A [6,10]. In this paper, we examine the general case.

It is known that reasonable solutions to AJBD can be obtained using a two
steps approach, by first applying an ordinary approximate joint diagonaliza-
tion (AJD) algorithm, and then clustering the separated components (rows of
the demixing matrix) [7,12]. In Section 3 we suggest a method for the clus-
tering operation, followed by the main point of this paper: we show that not
all AJD algorithms are equally suitable for such a two-steps AJBD approach.
More specifically, we prove that unlike several popular AJD approaches, one
recently proposed AJD method (U-WEDGE, Uniformly Weighted Exhaustive
Diagonalization with Gauss itErations [14]) features a unique ability to attain
ideal separation in the unperturbed (“noiseless") case, for general (not necessarily
orthogonal) matrices A. Our theoretical results are corroborated with simulation
experiments in Section 4, both for the unperturbed and perturbed cases, showing
the empirical advantages of U-WEDGE for the latter. We start, however, with a
short overview of the AJD methods considered in this work. Their applicability
in solving the block AJD problem is studied later in Section 4.

1 The mutual angle between two subspaces can be obtained in Matlab� using the
subspace function.
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2 Survey of Main AJD Methods

Several well-known AJD methods are based on minimization of one of the three
following criteria, possibly subject to one of the two constraints stated below.

CLS(W) =
N

∑

i=1

‖Off(WRiWT )‖2
F (3)

CLL(W) =
N

∑

i=1

log
det Ddiag(W ̂RiWT )

det(W ̂RiWT )
(4)

CJ2(W) =
N

∑

i=1

‖Ri − W−1Ddiag(WRiWT )W−T ‖2
F (5)

where the operator “Off" nullifies the diagonal elements, whereas “Ddiag" nullifies
the off-diagonal elements of a square matrix, Ddiag(M) = M − Off(M)), and
“‖ · ‖F " stands for the Frobenius norm. The possible associated constraints are

1. Each row of the estimated demixing matrix ̂W has unit Euclidean norm.
2. ̂WR1

̂WT has an all-ones main diagonal.

The latter constraint usually corresponds (in the BSS context) to some scaling
constraint on the estimated sources.

In the sequel we shall examine five AJD methods: QAJD [15], FAJD [9],
LLAJD [11], QRJ2D [2] and WEDGE [14], especially in its unweighted version
U-WEDGE. QAJD is based on minimization of the criterion (3) under the con-
straint 2. FAJD minimizes (3), penalized by a term proportional to log | detW|.
LLAJD minimizes (4) and QRJ2D minimizes (5), both under the constraint 1
(which is actually immaterial to the minimization in these cases).

WEDGE and its more simple unweighted (or uniformly-weighted) version U-
WEDGE, which we consider in here, are different. U-WEDGE seeks a demixing
matrix W which satisfies

argminA

N
∑

i=1

‖WRiWT − ADdiag(WRiWT )AT ‖2
F = I (6)

where I is the LK×LK identity matrix. Roughly speaking, this implies that the
set of matrices {WRiWT } cannot be jointly-diagonalized any further, since its
“residual mixing" matrix, or its “best direct-form diagonalizer" (in the LS sense)
is Ā = I, the identity matrix.

It was shown in [14] that a necessary and sufficient condition for A = I to
be a stationary point of the criterion in (6) is a simpler set of nonlinear “normal
equations",

Off

[

N
∑

i=1

(WRiWT )Ddiag(WRiWT )

]

= 0 . (7)

The more general WEDGE algorithm differs from U-WEDGE by incorporating
special weight matrices in the quadratic criterion in (6). Although apparently
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complicated, both versions are computationally very efficient. Particular forms
of WEDGE are used successfully in WASOBI for asymptotically optimal blind
separation of stationary sources with spectrum diversity, and in BGSEP for sep-
aration of nonstationary sources [14]. Although our analytical proof and experi-
ments in the sequel refer to the more simple version U-WEDGE, our experience
shows that WEDGE shares the same ability of U-WEDGE to attain exact joint
block-diagonalization in the unperturbed case.

3 AJD Methods in the Block Scenario

A natural extension of AJD methods in the block scenario is to replace the
criterion (3) by

CBLS(W) =
N

∑

i=1

‖Boff(WRiWT )‖2
F (8)

where the operator “Boff" nullifies the elements of a matrix that lie in the diag-
onal blocks. This is the main idea in [5].

It is obvious that since the criteria (3) and (8) are generally different, their
minima differ as well, in general. If the diagonal blocks’ sizes L are small, then one
may expect the AJD and AJBD solutions to resemble. It is, however, necessary
to permute (namely to properly cluster) the rows in the estimated demixing
matrix, because the resulting order of rows is arbitrary in plain AJD algorithms.

3.1 Clustering of AJD Components

In this subsection a simple method of clustering the rows of de-mixing matrix
is proposed. It allows to reveal (or at least to enhance) the block structure of
the result. We suggest the following greedy algorithm: Given the AJD demixing
matrix W, compute an auxiliary matrix B as

B =
N

∑

i=1

|WRiWT| . (9)

where the absolute value is taken elementwise. If the demixing is perfect, B
should have, after arranging columns and rows, the same block structure as the
original matrices Mi. Take the first column of B and sort its elements decreas-
ingly. Let i1, . . . , iL be the indices of the column elements with the L largest
values. Then W1 is built of the rows of W with these indices. The rows and
columns of B at the positions i1, . . . , iL are set to zero, and the procedure iter-
ates further sorting of the column of B with the next nonzero elements, until all
subspaces (blocks) Wk, k = 1, . . . , K, have been determined.
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3.2 U-WEDGE Provides Perfect Separation of the Blocks

In this subsection we prove that in the unperturbed (“noiseless") case, U-
WEDGE provides, upon convergence, perfect separation of the blocks.2 Let Vk

be the result of the hypothetical operation of applying U-WEDGE to each of
the blocks-sets M1k, . . . ,MNk for k = 1, . . . , K, where Mik is the kth diagonal
block of Mi, i = 1, . . . , N . It follows from (7) that each Vk obeys

Off

[

N
∑

i=1

(VkMikVT
k )Ddiag(VkMikVT

k )

]

= 0 . (10)

Now, define WU as

WU = Bdiag(V1, . . . ,VK)A−1 . (11)

It is straightforward to see that WU is a U-WEDGE block diagonalizer of the
original matrix set Ri = AMiAT , because it obeys the corresponding normal
equation

Off

[

N
∑

i=1

(WURiWT
U )Ddiag(WURiWT

U )

]

= 0 , (12)

and on the other hand, that WURiWT
U has the perfect block-diagonal structure,

WURiWT
U = Bdiag(V1Mi1VT

1 , . . . ,VKMiKVT
K), i = 1, . . . , N . (13)

We note in passing, that since, as mentioned in [14], (7) is also a necessary
condition for a solution of the FFDiag AJD algorithm [16], this property is
shared by the latter as well.

4 Simulation Experiments

We first consider an experiment reflecting the unperturbed case, as shown in Fig-
ure 2 at the end of the paper. We generated N = 3 block-diagonal matrices Mi,
i = 1, 2, 3, of dimension 20×20, each containing four symmetric 5×5 blocks Mik

generated as Mik = HikHT
ik, Hik being random 5×5 matrices with independent

standard Gaussian elements. The matrices Mi are shown in diagram (a). The
20×20 mixing matrix A was generated as random orthogonal, via QR decompo-
sition of a random matrix. Diagram (b) shows raw results of applying U-WEDGE
to the unperturbed set Ri = AMiAT , i = 1, 2, 3. Obviously, the block-diagonal
structure of the results is obscured by residual random permutations in these

2 Theoretically U-WEDGE can be stacked in a false solution [14], but in practice it is
very rare, and the solution is unique up to well known permutation ambiguity.
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Fig. 1. Average subspace angular error for different AJD techniques versus SNR. (a)
orthogonal mixing matrix, (b) random mixing matrix.

matrices. Diagram (c) shows the same matrices after applying the re-ordering
procedure described in section 3.1. The angular error between the estimated and
original subspaces (blocks of W and A−1) are zeros. Diagrams (d) and (e) show
results obtained using the same procedure with the AJD algorithms QRJ2D and
LLAJD. The average angular errors of the estimated subspaces were 4.6x10−3

(rad) and 1.3x10−4(rad), respectively. The algorithms QAJD and FAJD were
excluded, as they did not converge properly in this experiment.

In Figure 1 we proceed to compare the performance in the perturbed (“noisy")
case. We plot the average angular subspace errors vs. the Signal-to-Noise Ratio
(SNR) for the two-steps method using U-WEDGE, QRJ2D, LLAJD. For refer-
ence, we also compare to a unitary JBD algorithm [5], and three non-unitary
algorithms: the closed form algorithm, utilizing only the first two matrices, la-
belled as CFA [10], the algorithm of Ghennioui et al, labelled as GH, [6], and the
nonlinear conjugent gradient (NCG) of Nion [10]. The random noise matrices
Ni were taken as symmetric with zero-mean entries, Gaussian-distributed with
variance 10−SNR/10. The average of the angular error is taken with respect to the
four block and over 10 independent trials (with newly generated blocks and the
noise, and the same mixing matrix A). We consider both the case of orthogonal
(Fig.1(a)) and non-orthogonal (Fig.1(b)) A. We note that JBD (which assumes
orthogonality) performs best in the former but fails in the latter. Among the
AJD-based methods, U-WEDGE based AJBD usually attains the best results
for moderate SNR’s. It is outperformed by NCG, when the SNR is high. The
worse performance of NCG at low SNR is probably due to getting the algorithm
stacked in side local minima. Note a huge difference in computation speed. While
one run of NCG takes cca 90 s, one run of U-WEDGE takes about 0.01 s of mat-
lab running time on an ordinary PC with a 3GHz processor.
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(a)

(b)

(c)

(d)

(e)

Fig. 2. Original and demixed matrices, displayed as log10(|Mi| + 10−5): (a) Original
block-diagonal matrices (b) the matrices after mixing and de-mixing by U-WEDGE (c)
the matrices after sorting row and columns (d) result for QRJ2D (e) result for LLAJD
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5 Conclusions

We have shown theoretically and demonstrated in simulations that in the context
of AJD-based AJBD, U-WEDGE attains an exact solution in the unperturbed
case (with general mixing matrices), and usually performs better than other
AJD algorithms in the perturbed case. The paper gives an explanation why the
BG-WEDGE algorithm (which is similar) works so well in the time domain blind
audio source separation [8].

Acknowledgements. The authors wish to give thanks to Dr. Dimitri Nion for
sending them a matlab code of his algorithm JBD-NCG.
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